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The authors discuss the interpretation of four alternative energy adjustment methods
(Residual, Standard, Partition, and Nutrient Density) that have been proposed for the
analysis of nutritional epidemiology studies. These methods have so far been compared
under circumstances where intake of the nutrient of interest is measured as a continuous
variable. Because it is common practice to categorize nutrient intakes in the analysis,
the authors investigate the effect of such categorization on the interpretation of resuits
from the four methods with the use of computer simulations and statistical theory. They
consider four cases: where the nutrient intake is either divided into quartiles or ordered
so as to investigate trend over the quartile groups, combined with using an adjusting
variable that is either continuous or categorized. The results show: 1) the Residual,
Standard, and Partition methods are no longer equivalent as they are in the continuous
case; 2) compared with the Standard method, the Residual method appears to be more
powerful for detecting trends in relative odds, is more robust to residual confounding
when the adjustment variable is categorized, and provides more meaningful odds ratios;
and 3) the Residual and Nutrient Density methods give closely similar results. Am J

Epidemiol 1994;139:323-38.

confounding factors (epidemiology); diet; epidemiologic methods; models, statistical;

nutrition assessment

There have recently appeared several ar-
ticles and letters concerning the statistical
methods to be used for appropriately ana-
lyzing relations between certain nutrient in-
takes and a specific disease (1-5). Several
statistical methods have been proposed and
their relations discussed. The methods that
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we will consider in this article are:

the Standard method (4),

logit(P) = Bys + BisF + BT,
the Residual method (1),

logit(P) = Bor + BirR + BT,
the Energy Partition method (3),

logit(P) = Byp + BipF + Bop(T — F),
and the Nutrient Density method (4),

logit(P) = Boy + Biw(F/T) + BT,

where P is the probability of disease, T is the
total energy intake, and F is the intake of the
nutrient of interest, which for the purposes
of this paper we will assume to be fat. The
intakes T and F are measured in kilocalories
per day. The variable R in the Residual
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2

method is the “energy-adjusted fat intake,
that is, the residual from regressing F on
T (1).

In a previous article (5), we have dis-
cussed the equivalences between the first
three of these methods and have pointed out
that the estimates of the parameters in any
one of these three methods can be used to
determine directly the estimates of the pa-
rameters in the other two. Understanding
these equivalences relieves some of the con-
cern over the choice of which method to use
and redirects attention to the question re-
garding the specific effects one wishes to
estimate.

In practice, epidemiologists usually ana-
lyze continuous data, such as nutrient in-
takes, by categorizing subjects into a small
number (3-5) of groups according to their
intake and establishing relative odds for
the different groups. Thus, although the
methods listed above have formed the ba-
sis of the debate, they are not the methods
that are used in practice. Unfortunately,
the equivalences between the first three
methods no longer exist once the data
have been categorized. In this paper, we
explore the consequences that categoriza-
tion has for analyses based on these meth-
ods. We start from the premise that the
true model linking disease and dietary in-
take is linear in the continuous variables,
as indicated by the models above, and we
use computer simulations and statistical
theory to study the impact of categoriza-
tion on the results of analyses.

MATERIALS AND METHODS

We used computer simulation techniques
to compare the four logistic regression
methods for the analysis of diet-disease
data. We simulated the results of a series
of random case-control studies having N,
cases and N, controls generated from a
linear logistic regression model in which
the logit of the probability of being a case
is linearly dependent on fat intake and on
intake from non-fat sources. For each
study subject (i = 1, ..., N; + N,), we
randomly generated a pair of dietary in-
take variables, F; (fat kilocalories) and 7,
(total kilocalories) from a bivariate normal
distribution with mean fat kilocalories =
930, mean total kilocalories = 2,380, fat
kilocalories standard deviation = 290, to-
tal kilocalories standard deviation = 550,
and correlation between fat and total kilo-
calories = 0.85. These values were de-
rived from data collected in a dietary
methodology study that was conducted as
part of the US-Finland Lung Cancer Pre-
vention Study (6). Letting 3 and 7y repre-
sent the disease effects of a fat kilocalorie
and a non-fat kilocalorie, respectively, the
disease-score S; = B F, + v (T; - F;) was
compared with a randomly generated Z,
(uniformly distributed between 0 and 1) to
classify the subjects into cases and con-
trols. The N, subjects with the largest S; —
logit(Z;) were classified as cases, and the
remaining N, subjects were classified as
controls.

Additional regression covariates were computed as the non-fat variable T; - F;, the fat density
variable D; = F,/T; and the fat residual variable R; = F; - F; = F, - (& + BT,), where &
and f% denote the least squares estimates from a linear regression of F on T for all N; + N,
subjects. For each dietary variable (x = F, T, T — F, D and R), quartile indicators were formed
in the following manner by using all N; + N, subjects:

1x

I,, = 1 if x falls into the first quartile; 0 otherwise

I,, = 1if x falls into the second quartile; 0 otherwise

I,, = 1if x falls into the third quartile; 0 otherwise

I,, = 1if x falls into the fourth quartile; O otherwise

A trend variable was computed as I, = I, + 2I,, + 315, + 4l,,.

Thé
the f¢
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Then, the following series of four logistic regression models were evaluated for each of
the four analysis methods on each simulated case-control study,
logit[P] = a + Bl + vy
4

a+ Bl + > 'YiIiy

i=2

Trend-Continuous

Trend-Quartile

4
a+ > Bl t vy Quartile-Continuous

i=2

4 a
a+ S Bl + X vl, Quartile-Quartile
i=2 i=2
where x and y denote the nutrient intake variable of interest and adjustment variable, re-
spectively.

For the Residual method, x = Randy = T; for the Standard method, x = Fandy = T;
for the Partition m,ethod, x = Fandy = T - F; and for the Density method, x = D and
y = T. In the Quartile-Continuous and Quartile-Quartile models B, represents the log relative
odds of disease in the ith (i = 2,3,4) quartile relative to the first quartile. In the Trend-
Continuous and Trend-Quartile models, B represents the trend in log relative odds over the
four quartiles.

To further understand the effect of categorization, we developed theoretic results for
simple linear regression models using the Residual, Standard, and Partition parameteriza-
tions. The theory deals with the case of linear approximations to stochastic regression models,
and is outlined in the Appendix. Results from the theory are based on asymptotic arguments
and therefore apply to large samples.

RESULTS

Table 1 presents the results of 1,000 simulations of fitting the Quartile-Continuous re-
gression models to data from a case-control study of 100 cases and 100 controls for four sets
of coefficients (per 1,000 kilocalories): 1) only intake from fat is related to disease, fat
coefficient = 2.4 and non-fat coefficient = 0; 2) intake from fat imparts an extra risk above
that from non-fat, fat coefficient = 1.8 and non-fat coefficient = 0.6; 3) the source of energy
is not related to risk, fat coefficient = non-fat coefficient = 1.2; and 4) intake from fat
increases risk while intake from non-fat is protective, fat coefficient = 1.8 and non-fat
coefficient = —0.6. The table contains the average estimated log odds ratio, the average
standard error of the log odds ratio and the proportion of estimated log odds ratios statistically
significant at the 5 percent level. The empirical standard deviation of the 1,000 estimated
log odds ratios is not included in the table because it agrees closely with the average standard
errors. The results of these simulations indicate the following:

« The Residual and Density methods give nearly identical results for all four sets of
coefficients.

* Except when energy source is unrelated to risk, the Standard method estimates higher
log odds ratios than does the Residual method: for example, in case 1 the average
Residual method estimates are 0.333, 0.571, and 0.919, while the average Standard
method estimates are 0.495, 0.836, and 1.303.

» Except when intake from non-fat is protective, the Partition method estimates higher
log odds ratios than does the Standard method; in case 1, the average Partition method
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TABLE 1. Average log odds ratio + average iog odds standard error (proportion significant at
p = 0.05); Quartile-Continuous mode! (from 1,000 simulations)

Method Quartile 2 vs. Quartile 1 Quartile 3 vs. Quartile 1 Quartile 4 vs. Quartile 1

Fat coefficient = 2.4, non-fat coefficient = 0.0

Residual 0.333 = 0.427 (12.5%) 0.571 = 0.427 (25.8%) 0.919 + 0.432 (57.2%)
Standard 0.495 + 0.470 (19.9%) 0.836 * 0.541 (35.4%) 1.303 + 0.688 (47.6%)
Partition 0.629 + 0.436 (31.4%) 1.064 * 0.451 (66.2%) 1.667 = 0.499 (93.2%)
Density 0.341 + 0.436 (13.8%) 0.573 + 0.439 (26.2%) 0.924 * 0.438 (54.5%)
Fat coefficient = 1.8, non-fat coefficient = 0.6
Residual 0.162 + 0.425 (6.5%) 0.281 £ 0.425 (9.3%) 0.452 * 0.426 (19.7%)
Standard 0.240 = 0.467 (8.9%) 0.410 + 0.536 (12.2%) 0.634 + 0.677 (17.1%)
Partition 0.467 + 0.433 (19.7%) 0.799 *+ 0.445 (43.5%) 1.252 + 0.486 (72.5%)
Density 0.175 + 0.433 (6.8%) 0.282 * 0.437 (9.1%) 0.456 + 0.433 (19.7%)
Fat coefficient = 1.2, non-fat coefficient = 1.2
Residual -0.009 = 0.426 (5.1%) -0.008 = 0.426 (5.7%) -0.016 + 0.425 (5.5%)
Standard —0.009 = 0.467 (5.3%) -0.012 = 0.536 (4.5%) -0.040 = 0.675 (6.2%)
Partition 0.310 + 0.433 (12.3%) 0.537 + 0.444 (22.9%) 0.831 = 0.481 (42.5%)
Density 0.008 * 0.434 (5.7%) -0.012 = 0.439 (5.1%) -0.012 = 0434 (5.5%)
Fat coefficient = 1.8, non-fat coefficient = -0.6
Residual 0.336 * 0.414 (11.9%) 0.598 * 0.414 (30.3%) 0.920 + 0.419 (61.0%)
Standard 0.488 + 0.457 (18.0%) 0.822 + 0.528 (33.6%) 1.301 * 0.671 (49.9%)
Partition 0.473 =+ 0.423 (19.5%) 0.796 = 0.439 (43.5%) 1.261 * 0.481 (75.3%)
Density 0.331 + 0.423 (11.1%) 0.604 + 0.427 (28.7%) 0.924 * 0.426 (60.1%)

Standard

estimates are 0.629, 1.064, and 1.667 compared to the average Standard method
estimates of 0.495, 0.836, and 1.303; however, in case 4, when non-fat is protective,
the average Partition method estimates are 0.473, 0.796, and 1.261, while the average
Standard method estimates are 0.488, 0.822, and 1.301.

* For the Residual and Density methods, the standard errors of the estimated log odds
ratios are constant across quartiles, while they are increasing for the Standard and
Partition methods (much more strongly for the Standard method).

* In case 3, the Residual, Standard, and Density methods each find statistically sig-
nificant log odds ratios in approximately 5 percent of the simulations.

* The Partition method more frequently finds statistically significant log odds ratios
than do the other three methods: for example, comparing quartile 4 with quartile 1
in case 1, the Partition method finds 93.2 percent of the simulations statistically
significant while the Residual, Standard, and Density methods find only 57.2 percent,
47.6 percent, and 54.5 percent significant.

* The Residual method finds more statistically significant log odds ratios than the
Standard method when comparing the extreme quartiles 4 versus 1, while the reverse
is seen when comparing quartile 2 with quartile 1 and comparing quartile 3 with
quartile 1.

Additional information is displayed in figure 1, which presents scatterplots of the estimated
log odds ratios comparing quartile 4 with quartile 1 for 100 simulations of case 1. Estimates
are in very close agreement between the Standard and Partition methods (correlation co-
cfficient, » = 0.91) and the Residual and Density methods (r = 0.90), while estimates
correlate less closely between the Residual and Standard methods (» = 0.71) and the Residual
and Partition methods (r = 0.71). A consistent pattern of correlations is observed for all four
cases and for each log odds ratio. The Standard-Partition and Residual-Density correlations
were generally much greater than the Residual-Standard and Residual-Partition correlations.
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Quartile 4 vs. Quartile 1

0.919 = 0.432 (57.2%)
1.303 + 0.688 (47.6%)
1.667 + 0.499 (93.2%)
0.924 + 0.438 (54.5%)

0.452 + 0.426 (19.7%)
0.634 + 0.677 (17.1%)
1.252 = 0.486 (72.5%)
0.456 = 0.433 (19.7%)

~0.016 = 0.425 (5.5%)
-0.040 + 0.675 (6.2%)
0.831 = 0.481 (42.5%)
0.012 = 0.434 (5.5%)

0.920 + 0.419 (61.0%)
1.301 £ 0.671 (49.9%)
1.261 = 0.481 (75.3%)
0.924 + 0.426 (60.1%)
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FIGURE 1. Comparison ¢f estimated log relative odds: quartile 4 vs. quartile 1: Quartile-Continuous modet; 100
simulations of case 1, fat coefficient = 2.4, non-fat coefficient = 0.

Similar to table 1, the results of fitting the Quartile-Quartile regrf_tssion m-OddS am; ple~ .
sented in table 2. The conclusions are similar to those for the Quartile-Continuous ‘m,()d@}_s

except that: .
o The average log odds ratio estimates from the Standard, Partition,' and I)t::[)?;lfty m’cfghf

ods are greater in table 2 than in table 1; for example, comparing Slum'til;]zc 4 wﬂh
quartile 1 in case 1, the average Standard method log odds ratio eslmlaite. from the
Quartile-Continuous model is 1.303 and is 1.523 from the Quat‘t_ﬂq—()uartl.le mt.)del.

e The Standard, Partition, and Density methods have more s‘ratlstlcally’51gn1f1cqnt
estimated log odds ratios in table 2 than in table 1; for example, comparing .qu'artﬂe

4 with quartile 1 in case 1, the Standard method finds 47.6 percent.st'atlstlca}ly
significant using the Quartile-Continuous model and 61.5 percent statistically sig-

nificant using the Quartile-Quartile model.
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TABLE 2. Average log odds ratio + average log odds standard error (proportion significant at
p = 0.05); Quartile-Quartile model (from 1,000 simulations)

Method Quartile 2 vs. Quartile 1 Quartile 3 vs. Quartile 1 Quartile 4 vs. Quartile 1

Fat coefficient = 2.4, non-fat coefficient = 0.0

Residual 0.332 % 0.430 (12.7%) 0.572 *+ 0.430 (25.9%) 0.920 * 0.435 (57.1%)
Standard 0.582 *+ 0.492 (23.1%) 0.977 * 0.570 (40.8%) 1.523 + 0.680 (61.5%)
Partition 0.643 + 0.441 (32.6%) 1.090 + 0.455 (67.4%) 1.710 + 0.498 (94.4%)
Density 0.381 * 0.439 (15.3%) 0.627 + 0.442 (29.7%) 0.963 *+ 0.441 (58.5%)
Fat coefficient = 1.8, non-fat coefficient = 0.6
Residual 0.161 = 0.428 (6.2%) 0.282 *+ 0.428 (9.0%) 0.452 + 0.428 (19.8%)
Standard 0.353 = 0.488 (11.9%) 0.560 = 0.563 (17.1%) 0.892 * 0.669 (30.0%)
Partition 0.494 * 0.437 (21.0%) 0.842 * 0.449 (47.3%) 1.323 + 0.486 (77.9%)
Density 0.217 = 0.436 (8.2%) 0.339 * 0.439 (11.7%) 0.497 + 0.435 (22.4%)
Fat coefficient = 1.2, non-fat coefficient = 1.2
Residual ~0.009 + 0.428 (5.6%) -0.007 + 0.428 (6.0%) -0.015 + 0.427 (5.5%)
Standard 0.131 + 0.489 (7.2%) 0.155 = 0.564 (6.1%) 0.259 *+ 0.669 (7.6%)
Partition 0.348 * 0.437 (14.4%) 0.594 + 0.448 (26.4%) 0.927 * 0.480 (51.2%)
Density 0.055 + 0.436 (5.7%) 0.050 = 0.440 (5.7%) 0.033 = 0.435 (5.4%)
Fat coefficient = 1.8, non-fat coefficient = —0.6
Residual 0.338 = 0.418 (12.1%) 0.603 = 0.418 (29.5%) 0.928 x 0.423 (59.7%)
Standard 0.514 x 0.481 (18.5%) 0.903 * 0.563 (36.5%) 1.403 + 0.669 (54.7%)
Partition 0.467 + 0.427 (19.1%) 0.790 * 0.443 (42.0%) 1.248 + 0.479 (76.3%)
Density 0.351 + 0.427 (12.5%) 0.633 * 0.431 (31.8%) 0.949 * 0.429 (61.3%)

Table 3 and figure 2 present the results of fitting the trend regression models, Trend-
Continuous and Trend-Quartile. The table contains the average estimated slope, its aver-
age estimated standard error, and the proportion of estimated trends statistically signifi-
cant at the 5 percent level. As for the estimated log odds ratios, the variance of the

TABLE 3. Average fat trend siope = average slope standard error (proportion significant at
P = 0.05), from 1,000 simulations

Method Trend-Continuous model Trend-Quartile model

Fat coefficient = 2.4, non-fat coefficient = 0.0

Residual 0.304 *+ 0.135 (61.4%) 0.305 + 0.136 (61.1%)
Standard 0.426 + 0.217 (49.7%) 0.496 + 0.217 (62.6%)
Partition 0.537 * 0.156 (94.7%) 0.548 * 0.156 (95.4%)
Density 0.306 * 0.137 (60.1%) 0.318 * 0.138 (64.6%)
Fat coefficient = 1.8, non-fat coefficient = 0.6
Residual 0.155 * 0.134 (20.3%) 0.154 * 0.135 (19.3%)
Standard 0.215 + 0.214 (16.5%) 0.295 *+ 0.213 (30.6%)
Partition 0.406 * 0.152 (77.1%) 0.426 = 0.152 (81.9%)
Density 0.156 * 0.136 (20.6%) 0.169 * 0.136 (23.5%)
Fat coefficient = 1.2, non-fat coefficient = 1.2
Residual -0.001 = 0.134 (5.9%) -0.001 + 0.134 (6.1%)
Standard -0.005 = 0.214 (5.1%) 0.085 = 0.213 (7.6%)
Partition 0.267 * 0.151 (42.3%) 0.295 = 0.151 (50.6%)
Density ~-0.001 = 0.136 (5.1%) 0.013 = 0.137 (5.5%)
Fat coefficient = 1.8, non-fat coefficient = 0.6
Residual 0.300 * 0.131 (62.7%) 0.302 + 0.133 (62.6%)
Standard 0.415 + 0.213 (49.1%) 0.452 + 0.214 (57.7%)
Partition 0.406 * 0.152 (77.4%) 0.402 = 0.151 (76.8%)

Density 0.302 * 0.133 (62.6%) 0.310 = 0.135 (64.6%)
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estimated trend slopes is not included because the average trend slope standard error is
only slightly smaller (1 percent) than the standard deviation of the 1,000 estimated slopes.
The results of the simulations indicate the following conclusions:

« ‘The Residual and Density methods give essentially the same results in all four cases.
« On average, the ordering of estimated slopes are Partition > Standard > Residual; for
example, the case 1 Trend-Continuous model results are 0.537 > 0.426 > 0.304.

e Using the Trend-Continuous model, the Residual method finds more statistically

significant estimated trend slopes than does the Standard method, 61.4 percent versus

49.7 percent in case 1.

» In general, using the Standard, Partition, and Density methods, the estimated trend
slope and proportion of statistically significant estimates from the Trend-Quartile
model are both greater than those from the Trend-Continuous model.

We found good agreement between the theory developed in the Appendix and the results
of these simulations. For example, table 4 provides the theoretical expected values and
standard errors of the log odds ratios for the Trend-Continuous models to compare with those

computed from the simulations.

DISCUSSION

Previous work on the Residual, Standard,
and Partition methods with the nutrient (e.g.,
fat) intake expressed as a continuous vari-
able has revealed that the meaning of the fat
coefficient varies according to the method
(5). For both the Residual and Standard
methods, the fat coefficient represénts the

TABLE 4. Asymptotic mean fat trend
slope + asympiotic standard error:
Trend-Continuous model

Method Trend-Continuous model

Fat coefficient = 2.4,
non-fat coefficient = 0.0

Residual 0.303 = 0.127
Standard 0.419 * 0.206
Partition 0.547 = 0.146
Fat coefficient = 1.8,
non-fat coefficient = 0.6
Residual 0.152 = 0.127
Standard 0.210 + 0.206
Partition 0.410 + 0.146
Fat coefficient = 1.2,
non-fat coefficient = 1.2
Residual 0.000 + 0.127
Standard 0.000 = 0.206
Partition 0.273 + 0.146
Fat coefficient = 1.8,
non-fat coefficient = -0.6
Residual 0.303 = 0.127
Standard 0.419 = 0.206
Partition 0.410 + 0.146

effect on disease of increasing fat intake by
substituting fat for non-fat nutrients; for the
Partition method, it represents the effect of
adding fat to the diet. Thus, one would ex-
pect estimated coefficients for fat to differ
according to the method used, except that
estimated coefficients from the Residual and
Standard methods should agree. However,
as observed by Kushi et al. (7) and seen in
our simulations, different estimated relative
odds are obtained from the Residual and
Standard methods in which fat intake is dis-
cretized.

We will first discuss the case where the
variable used for adjustment (e.g., total en-
ergy intake in the Standard method) is kept
as a continuous variable (table 1 and table 3,
column 1).

Residual versus Standard method

The reason for the discrepancy between
the Residual and Standard method results
can be understood by considering the mean-
ing of the relative odds parameters resulting
from categorization of the fat variable in
these two methods. Consider the risk of a
subject in the second quartile relative to a
subject in the first quartile. The Standard
method’s relative odds represent the effect
on disease of substituting enough fat for
non-fat in a subject’s diet so that the subject
will be taken out of the first into the second
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FIGURE 2. Comparison of estimated log relative odds trend slopes: Trend-Continuous model; 100 simulations of

case 1, fat coefficient = 2.4, non-fat coefficient = 0.

quartile of absolute fat intake. On the other
hand, the Residual method’s relative odds
represent the effect of substituting enough
fat for non-fat to move the subject from the
first to the second quartile of residual fat
intake. Because the between-subject varia-
tion in fat residual is smaller than the be-
tween-subject variation in absolute fat in-
take (4), a smaller increase in fat intake is
required to induce a step-up in fat residual

quartile than is required to induce a step-up
in absolute fat quartile. In other words, the
difference in fat intake between subjects in
the first and second quartiles of absolute fat
is greater than that between subjects in the
corresponding quartiles of fat residual. For
our simulations, the average intake of kilo-
calories from fat was 565, 835, 1,023, and
1,299 for subjects in each quartile of abso-
lute fat intake and 739, 879, 981, and 1,121
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for subjects in each quartile of residual fat
intake. Therefore, when fat intake is catego-
rized, the relative odds are expected to be
larger for the Standard method than for the
Residual method. This difference empha-
sizes that the relative odds from the two
methods no longer estimate the same quan-
tity.

Even though the relative odds from the
Standard method tend to be greater than
those from the Residual method, the ob-
served ordering may be reversed, as noted
by Kushi et al. (7) and seen in figure la.
This lack of concordance between the two
sets of estimates can be explained by not-
ing that categorizing subjects by absolute
fat intake may give quite different results
than categorization by residual fat intake.
For a correlation between intake from fat
and total energy intake of 0.85, table 5
shows how the proportions of subjects
within each quartile of absolute fat intake
are expected to be distributed among the
quartiles of residual fat intake. For ex-
ample, of those falling into the second
quartile of absolute fat intake, 28 percent,
30 percent, 26 percent, and 16 percent are
expected to fall into the first through
fourth quartiles of fat residual. Figure 3 il-
lustrates this phenomenon for 100 ran-
domly generated sets of values for fat and
total intake (see also Kushi et al. (7)). As a
result, for any single set of data, the Stand-
ard method and Residual method relative
odds estimates may be based on two sub-
stantially different sets of individuals.

Our simulations and theory also allowed
us to examine the statistical power of these
methods for detecting a relative odds trend.
The larger relative odds obtained using the

TABLE 5. Percent of subjects in absolute fat
intake quartiles expected to fall into residual
fat intake quartiles*

Absolute fat Residual fat quartile
quartile 1 2 3 4 Total
1 50 28 16 6 100
2 28 30 26 16 100
3 16 26 30 28 100
4 6 16 28 50 100

* Correlation (fat calories, total calories) = 0.85.

Standard method do not translate into a
power advantage over the Residual method.
When adjustment for total energy intake is
accomplished by including total kilocalories
as a continuous covariate, the Residual
method has greater power than the Standard
method. This is because categorization af-
fects not only the magnitude of the relative
odds trend but also the magnitude of its
standard error. The Standard method’s
standard error is larger than the Residual
method’s standard error and by a factor
greater than the ratio of the relative odds
trends of the two methods (see Appendix).
Figure 3 shows why this occurs. Because of
the high correlation between total energy
and fat intake, nearly all subjects having the
lowest total energy intake will fall into the
quartile of lowest fat intake and nearly all
subjects having the highest total energy in-
take will fall into the quartile of highest fat
intake. Therefore, these subjects will con-
tribute very little information regarding the
fat relative odds, particularly that of quartile
4 versus quartile 1. This loss of information
translates into the larger standard error for
the Standard method relative odds estimates
as shown in tables 1-3. Because the power
for detecting a relative odds trend is a func-
tion of the ratio of its expected value to its
standard error, the Residual method ends up
giving a higher power than the Standard
method.

Standard versus Partition method

Comparison of the results from the Stand-
ard method with those from the Partition
method are also of interest. Both the Stand-
ard and Partition methods use absolute level
as the fat intake variable and thus a change
from the first to the second quartile repre-
sents the same magnitude of change. How-
ever, as noted earlier, the fat coefficient in
the Partition method represents the effect of
adding dietary fat, whereas the fat coeffi-
cient in the Standard method represents the
effect of substituting fat for non-fat. Be-
cause these effects are not usually the same,
one should not expect to obtain the same
estimates from these methods. The result of
substituting fat for non-fat depends on the
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FIGURE 3. Example of 100 random dietary intakes categorized by quartiles of absolute fat intake (horizontal
dashed lines) and quartiles of residual fat intake (angled dashed lines). Correlation of fat calories with total calories

= 0.85. Dark points fall into opposite extreme quartiles.

effect of non-fat intake as well as on the
effect of fat consumption. In our simula-
tions, the Partition method gave larger rela-
tive odds than the Standard method when
non-fat intake was assumed to increase the
risk of disease. For the simulations where
non-fat intake had a negative (i.e., protec-
tive) effect against disease, the Partition
method relative odds tended to be smaller
than those from the Standard method. In the
case where non-fat had zero effect on dis-
ease, the Partition method again gave esti-
mated relative odds larger than the Standard
method, although using continuous vari-
ables the relative odds would have been
equal. Categorization of the fat variable re-
sults in attenuation of the relative odds when
the true relation with disease risk is linear
with fat intake on the continuous scale. The
degree of attenuation, however, depends on
the correlation of fat intake with the adjust-
ment variable in the model. When the cor-
relation is high, as in the Standard method,

then the attenuation is greater than when the
correlation is lower, as in the Partition
method (see Appendix). Hence, the Partition
method estimated relative odds tend to be
larger.

It is also notable that the Standard and
Partition methods give results that are
closely correlated (figure 1d). As mentioned
above, relative odds from the Standard
method may be larger or smaller than those
from the Partition method, depending on the
size and direction of the effect of non-fat
energy on disease. However, for a fixed ef-
fect of non-fat intake, the scatterplot shown
in figure 1d indicates that one should be able
to closely predict the Standard method rela-
tive odds for fat from the relative odds using
the Partition method.

Nutrient Density method

The Nutrient Density method fat coeffi-
cient represents the effect of increasing the
percentage of fat in the diet while keeping
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total energy intake constant. The Nutrient
Density method therefore represents another
version of a substitution method. The Re-
sidual and Nutrient Density methods appear
to produce results that both agree well on
average (tables 1 and 3) and also agree con-
sistently across differenf data sets (figures
1c and 2c). The empirical results indicate
that these methods are closely linked, at
least in the simulation cases that we con-
sidered. Kushi et al. (7) also report close
agreement between the results from these
two methods.

Categorizing the adjusting variable

The discussion so far has covered the
case where we have modeled the adjusting
variable (non-fat intake for the Partition
method and total energy intake for the
other three methods) as a continuous vari-
able assumed to have a linear effect. The
results in table 2 and table 3, columu 2,
cover analyses where we modeled the ad-
justing variable as categorical (in quar-
tiles). These results demonstrate that when
the true relation between disease and the
adjusting variable is linear, then adjust-
ment using categorization may produce
quite different results from those using the
correct regression model. This bias is due
to “residual confounding” by the adjusting
variable (8). When the adjusting variabie
is categorized, its confounding effect is not
completely captured by the regression
model. The magnitude of the remaining
bias depends on the strength of correlation
of the fat variable with the adjusting vari-
able and the strength of the adjusting vari-
able-disease relation. Therefore, the order-
ing of the fat-adjusting variable correla-
tions implies that the residual confounding
bias should be largest for the Standard
method and smallest for the Residual
method. Both the Nutrient Density and the
Partition methods suffer from this bias;
however, its magnitude is considerably
smaller than for the Standard method be-
cause the fat-adjusting variable correlation
in these methods is less strong.

When the adjusting variable is quartiles of
total energy intake, the biases produce a spu-

rious statistical power advantage for the
Standard method over the Residual method.
The same bias leads to statistically signifi-
cant results in greater than 5 percent of the
simulations for case 3, effect of fat = effect
of non-fat = 1.2, where there is really no
effect of substituting fat calories for non-fat
calories as implicitly defined by the Stand-
ard and Residual methods. Proper adjust-
ment by a model containing a linear effect
of total energy intake results in, as expected,
approximately 5 percent of the simulations
statistically significant for the Residual and
Standard methods (table 1), whereas when
adjustment is by quartiles of kilocalories,
the bias increases the percentage of signifi-
cant results using the Standard method to
nearly 7 percent (table 2).

Conciusion

The resuits presented in this paper are
restricted to categorization of variables
into quartiles. Other simulations and our
theory indicate that the same qualitative
effects occur when smaller or larger num-
bers of categories are used. However, as
the number of categories increases, the re-
sults approach those based on the continu-
ous variable models when the assumed
model is true.

This study comprises results from simu-
lations of a logistic linear model relating di-
etary intake to disease incidence and from
theory based on a multiple linear regression
model. The simulations are limited to a
rather simple model and only four sets of
parameter values. We developed the theory
partly to gain insight into some of the sur-
prising aspects of the simulation results and
partly to understand which paiterns seen in
the simulations would apply more generally
and which were specific to the simulation
cases chosen. That we were able to obtain
formulas from a multiple linear regression
model that could predict rather well the
results of logistic regression simulations
gives us confidence that the patterns we
have described are quite general. However,
we should emphasize that our models are
simpler than those encountered in real epi-
demiologic studies, for example, containing
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no risk factors that are confounded with di-
etary intake, no measurement error, a linear
relation between fat intake and total energy
intake, and a linear relation between disease
and dietary intake. Nevertheless, we believe
the study has led to some useful insights.
The most important message is that catego-
rizing continuous variables in a statistical
analysis is not without consequences. The
Standard and Residual method differences
in relative odds estimates and statistical
powers are due entirely to categorization.
The relative odds estimates and powers are
identical using the same methods with con-
tinuous variables.

Which of the two methods, Residual or
Standard, is preferable, given that one
wishes to categorize? In this work, we
have found that the Residual method ap-
parently provides more statistical power
for detecting trends in relative odds when
total energy intake is correctly specified in
the model. In addition, the Residual
method is more robust to residual con-
founding when the total energy variable is
not specified correctly in the model. We
also believe the relative odds estimated
from the Residual method better reflect the
effect of nutrient substitution than those
from the Standard method. The Residual
method quartiles are based on the variabil-
ity of residual fat intake, which is equiva-
lent to the variability in absolute fat intake
for subjects with the same total energy in-
take. On the other hand, the Standard
method quartiles are based on the variabil-
ity of absolute fat intake for the entire
population regardless of their total energy
intake. Both methods are concerned with
the effect of substituting fat for non-fat,
keeping total energy intake constant. Use
of quartiles of residual fat intake is more
consistent with estimating this substitution
effect. It therefore appears to us that the
Residual method carries several advan-
tages over the Standard method when cat-
egorization is used.

It has been suggested that the Standard
method Quartile-Quartile model should
not be used when the correlation between
the nutrient and total energy intakes is 0.8

or greater. This is because within the low-
est quartile of total energy there would be
few or no subjects in the highest quartile
of absolute fat and within the highest quar-
tile of energy few would fall into the low-
est quartile of absolute fat. Therefore, it is
suggested that a comparison of the highest
and lowest quartiles of absolute fat would
be too imprecise if the analysis were strati-
fied by quartiles of total energy. However,
rather than stratification for energy adjust-
ment, the Standard method Quartile-Quar-
tile regression model produces increased
precision (over stratification estimates) by
using information from all the other inter-
quartile comparisons. For example, table 2
shows that the Standard method Quartile 4
versus Quartile 1 comparison has, on aver-
age, only a 38 percent larger standard error
than the Quartile 2 versus Quartile 1 com-
parison.

Another message of the paper is that the
Residual and the Nutrient Density methods
appear to give very similar results. The rea-
sons for this near equivalence need to be
better understood.

Because the Partition coefficients have a
fundamentally different interpretation from
the Residual or Standard coefficients, we
are not surprised by the differences found
in this study in its relative odds and statis-
tical powers. This study reinforces the
message that these two methods, by an-
swering different questions, may lead to
quite different numerical results (5). One
needs to decide whether one is interested
in the effect of adding fat intake to the diet
or in the effect of increasing fat consump-
tion by substituting fat for non-fat intake,
and then choose the appropriate method.

Categorization is the epidemiologists’
protection against gross misspecification of
the model. It is indeed a useful device, but
as shown in this paper (and in a recent pub-
lication on nondifferential misclassification
(9)), its consequences on the results of an
analysis can be surprising. Investigators
should not assume that the statistical prop-
erties of a model with continuous variables
will necessarily transfer across to the same
model with the variables categorized.
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APPENDIX

Statistical theory for regression coefficients of categorized variables

Let y be a continuous variable representing “level” of disease (note that in the main text
the symbol y is used differently). Consider the linear stochastic regression model linking
disease to continuous nutrient intakes X = (X3, .. ., Xx)

y = B(ylx) + € = xP + ¢, (A1)

where 8 = (B, - . ., Bi) is the (k X 1) vector of regression coefficients corresponding to

each nutrient intake, and € is a disturbance term such that E(e|x) = 0 and E(e’1x) = o

By centralizing y and thic nutrient intakes X, we can assume that E(y) and E(x) = 0. Letz

= (21, ..., Zn) be a (1 X m) vector of transformed nutrient variables,
z=gx),j=1,...,m,

where transformations g; can be, for example, categorization into quartile indicator variables,
or to a variable representing a trend over categories, as described earlier. We will assume
that the transformed variables are centralized so that

Bz)=0,j=1,...,m.

The regression E( y | z) may not be linear because of the transformation, so we will consider
the mean-square linear regression of y on z, that is the least squares lincar approximation
of y by the linear combination zvy, where y = (yy, . . . , ¥u)'- In the framework of the main
text the values 7y, ..., ¥m Will correspond to regression coefficients in models linking

disease to categorical nutrient intakes. We have
y=zy+39,
where
E(8) = 0 and E(z'5) = 0.

With n subjects in the sample, let ¥ be the ordinary least squares estimator of v, the vector
of regression coefficients. We can show that for large n

\/r—z (% — ) is approximately distributed as N(0, V'E(z' 8°z)V™"), (A2)

where V = E(z'z) is the variance-covariance matrix of vector z'. Then, by definition, the
asymptotic mean and variance-covariance matrix of vy are as follows:

E() = v = V'E@@'x)B (A3)
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and
var(y) = (1/n)V'E(z' 8’2)V~". (Ad)
The middle part of the expression on the right side of expression A4 may be expanded
as
E(z'8%z) = E[z'(xB + € — zy)’z).
On further expansion and simplification we may obtain
var(§) = (e¥n)V' + (1/n)V'WV~, (AS)

where W is a (m X m) matrix with elements that are linear combinations of moments of
the joint distribution of x and z. Note that if the regression of y on z were linear and
homoscedastic, then the asymptotic expectation of 9 would be the same as in expression A3
and the variance-covariance matrix would be given by the usual least squares expression

var(y) = (a¥/n)V7, (A6)

since in this case W = 0. For the categorizations considered in the present paper, the
regression on the categorized variables is nonlinear, but the difference between the expres-
sions A5 and A6 is relatively small for all of the models we considered. For example, for
the Trend-Continuous model (table 4), a comparison of an approximation for the standard
errors (SE) based on formula A6 with those calculated from expression AS is shown below:

Method Trend coefficient SE (A6) Trend coefficient SE (AQ

Residual 0.12649 0.12696
Standard 0.20481 0.20599
Partition 0.14449 0.14578

Expected values and standard errors for the Trend-Continuous modei

Application of the above theory leads to relatively simple formulas for the expected trend
coefficient vy in the Trend-Continuous models. Formulas for the standard errors of the trend
coefficient are more complex but we can use approximating formulas derived from ex-
pression A6, The formulas for these expected trends and standard errors are given below.

Residual method:
g d 12ko:\/1 — p°G 8
Expected trend = 0 — 1)\/?}— 2k T2

Standard error =~ \/ 12
(p* - V71 — ™

126%0,(1 — p)G
Expected trend = (p2 _ 1)(1 ¥ 2kp ¥ k2) — 12(1 + kp)sz BIS

Standard method:

2
Standard error =~ \/ 12(1 + 2kp + &%)
[(p? = DA + 2kp + K9 — 121 + kp)G?Jm(1 — m)
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Partition method:

120.(1 — p»G
Expected trend = P — 1) — 120" Bip

Standard error = \/ 12
[(p* = 1) - 12p°G*1=(1 — =y

where o is the standard deviation of fat intake, & is the ratio of the standard deviation of
non-fat intake to o, p is the correlation between fat and non-fat intakes, p is the number
of categories, 1 is the proportion of cases, and

G =2 ¢o7'p)],

i=1

where ¢ and @' are the probability density and the inverse cumulative density functions
of the standard normal distribution. The B coefficients are the same as those defined in the
introduction. We have approximated the value of o2 in formula A6 by 1/[w(1 — 7)]. Explicit
formulas for the Trend-Quartile, Quartile-Continuous, and Quartile-Quartile models are
more complex and are not shown here.

Power of Standard versus Residual method in the Trend-Continuous model

From the formulas for expected trends and standard errors given above, the ratios of the
expected trend coefficient 10 its standard error for the Residual and Standard methods are:

R, = EGw) _ V12kop\/1 - p’G\/m(l — MBy
SE(Y1x) V@ — D1+ 2kp + &)

BBy _ V12k0,(1 — p)G\/ 71 — mBy
Rs = SEGhs) ~ VI = DU + 2kp + k) — 1201 + kp/'G2I(1 + 2kp + &)

We can show that the ratio of Ry to Ry is greater than 1 when p® - 1 — 12G? is greater
than 0. This is always true because the correlation between fat intake F and its categorized

trend variable is \/ﬁ GV p'2 —_1, which, by definition, is less than 1.

Attenuation of the Standard and Partition methods for the Trend-Continuous model

The above formula for the expected trend coefficient for the Partition method can be
written as,

12G?
1- 50— )p?
120,.G pr—1 .
pz - 1 1 - 1202 Bll"
— 2
! (pz - 1>p

In terms of the correlation pgy between fat intake variable F and the adjusting variable
total calorie intake 7, the expected trend coefficient for the Standard method can be written

E(¥,p) = [
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in similar form,

12G?
1 - —)p2
120‘FG] ’ p?— 1)

pP -1 ( 12G? ) Bis-
1- pr
p2 _ 1 FT

The first factor on the right-hand side of these formulas can be understood as a trans-
formation factor resulting from categorizing the fat intake variable. The second factor can
be understood as one minus the coefficient of attenuation. We can show that attenuation is
an increasing function of the squared correlation between the fat intake and the adjusting
variable. Because p” is smaller than pZ,, the attenuation in the Partition method is smaller
than the attenuation in the Standard method. As a result, the expected trend coefficient for
the Partition method is greater than for the Standard method.

E(i’ls) = [




